УДК 53.088.2

ВЛИЯНИЕ КОНФИГУРАЦИИ ИНТЕГРИРУЮЩЕЙ СФЕРЫ НА ФОТОМЕТРИЧЕСКУЮ ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ А.С. Шерстобитова

Проведен анализ фотометрических погрешностей измерения коэффициентов отражения для различных конструкций интегрирующей сферы. Выполнен расчет освещенности внутри этих сфер, а также на поверхности образца. Рассмотрены факторы, влияющие на погрешность измерения. Установлено, что освещенность на образце остается практически равномерной для всех рассмотренных конструкций сферы. Основная фотометрическая погрешность связана с различием коэффициентов отражения образцов. Использование экрана не создает дополнительной фотометрической погрешности.

Ключевые слова: фотометрическая погрешность, интегрирующая сфера, освещенность, коэффициент отражения, экран.

Введение

Фотометрическая интегрирующая сфера широко используется для измерений оптических характеристик объектов с диффузным отражением и пропусканием света. В большинстве приборов излучатель и фотоприемник располагаются за пределами полости интегрирующей сферы. Анализ фотометрических погрешностей в подобной конструкции сферы проводился ранее, например в [1]. Для повышения эффективности светоотдачи излучателя целесообразно располагать его внутри фотометрической сферы, а сбор отраженного излучения проводить с помощью оптического волокна. При этом необходимо исключить прямое попадание света от излучателя на образец. Это можно обеспечить установкой непрозрачного экрана. Цель настоящей работы состояла в анализе фотометрических погрешностей измерения коэффициентов отражения света для различных конфигураций интегрирующей сферы.

Расчет освещенности

В анализе рассматривались три специально разработанные конструкции фотометрической сферы, показанные на рис. 1. Первая – традиционного типа с внешним осветителем и фотоприемником – не имела экрана (рис. 1, а). Вторая сфера имела осевую симметрию: экран и излучатель располагались вблизи центра сферы (рис. 1, б). В третьей конфигурации осветитель и экран располагались в плоскости большого круга сферы, волоконный жгут – в центре сферы (рис. 1, в).

Сферы имели сходные оптогеометрические характеристики: диаметр полости 70 мм; диаметр выходного люка 15 мм; коэффициент отражения поверхности сферы 0,97; коэффициент отражения образца 0,7; диаметр входного люка первой сферы 15 мм; диаметр экрана второй сферы 23 мм; размеры третьей сферы 7,5 × 12,5 мм; для второй и третьей сфер диаметр волоконно-оптического коллектора 1 мм, коэффициент отражения экранов 0,97.

Рис. 1. Конструкции фотометрической интегрирующей сферы: с внешним излучателем (а); с экраном и излучателем вблизи центра (б); с экраном и излучателем в плоскости большого круга (в)

Для анализа фотометрических погрешностей было исследовано распределение освещенности в полости сфер. Предполагалось, что отражение подчиняется закону Ламберта. Освещенность внутри сферы рассчитывалась матричным методом [1–3]. В соответствии с этим методом на внутренней поверхности сферы, а также на поверхностях экрана и образца выделялись кольцевые зоны, которые имели одинаковые освещенность и коэффициент отражения. Обмен излучением между элементами двух зон в точ-ках с координатами Ω_i и Ω_i определялся конфигурационными факторами:

$$G(\Omega_i, \Omega_j) = \frac{\cos(\xi_i) \cdot \cos(\xi_j)}{\pi \cdot \chi^2}$$

где χ – расстояние между точками Ω_i и Ω_j ; ξ_i и ξ_j – углы между направлениями Ω_j Ω_i , Ω_i Ω_j и нормалью к поверхности в точках Ω_i и Ω_j соответственно. Тогда освещенность *i*-ой зоны можно представить в виде уравнения [1]:

$$E_{\nu}(\Omega_i) = E_{\nu 0}(\Omega_i) + \sum_i E_{\nu}(\Omega_j) \cdot \rho(\Omega_j) \cdot G(\Omega_i, \Omega_j) \cdot \lambda_j,$$

где $E_{\nu 0}$ – первичная освещенность от источника излучения; $E_{\nu}(\Omega_j)$ – освещенность *j*-зоны; $\rho(\Omega_j)$ – ее коэффициент отражения; λ_j – весовой множитель, определяемый методом интегрирования по поверхности зоны, *i* и *j* – индексы зон.

Задача представляется в виде матричного уравнения

 $E_{v} = (I - M)^{-1} E_{v0}$,

где *I* – единичная матрица; *М* – переходная матрица.

Влиянием волоконно-оптического жгута на распределение освещенности в сфере пренебрегалось. Начальная освещенность в сфере принималась за единицу и задавалась в предположении равномерности распределения светового потока на поверхности образца (первая конфигурация сферы) или на верхней поверхности экрана (вторая и третья конфигурации сферы). Поверхности, участвующие в обмене излучением, были разделены на поверхность образца и сферы (первая сфера), поверхность образца, верхнюю и нижнюю части сферы и экрана (вторая и третья сферы). Если обмена излучением между участками не происходило или какие-то зоны перекрывались экраном, то соответствующие конфигурационные факторы считались равными нулю.

Результаты расчетов и экспериментов

На рис. 2 показано вычисленное матричным методом распределение освещенности ($E_{\nu}-E_{\nu 0}$) на поверхности сферы и на поверхности образца для трех конфигураций соответственно. Здесь по оси абсцисс приводятся номера колец. На рис. 2, а, видно, что освещенность на стенках сферы и на образце остается равномерной. По рис. 2, б, в, можно заметить, что наибольшую неравномерность освещенности имеет верхняя часть сферы в обеих конструкциях, поскольку на нее падает отраженный от верхней плоскости экрана световой поток. Освещенность же нижней части сферы и поверхности образца остается практически равномерной. Однако сравнение трех конструкций показывает, что с учетом вычета $E_{\nu 0}$ освещенность сферы и образца в конфигурации без экрана в целом ниже, чем освещенности для конфигураций с использованием экрана.

При анализе учитывались такие факторы, влияющие на погрешность измерений, как изменение диаметра выходного люка или образца и изменение диаметра экрана. Кроме того, интегрирующая сфера имеет нелинейный отклик освещенности на присутствие образца [4]. Поэтому этот фактор также принимался во внимание.

Размеры экрана варьировались в пределах 10,1–25,5 мм (для третьей сферы ширина экрана оставалась 7,5 мм, изменялась только его длина), а выходного люка – в пределах 11–17 мм. На рис. З для каждого кольца показана относительная разность освещенностей второй и третьей интегрирующих сфер с различными размерами экранов при постоянстве других параметров, на рис. 4 показана относительная разность освещенностей трех сфер с различными диаметрами выходных люков, но одинаковыми другими параметрами. Поскольку разница в освещенностях для всех конфигураций интегрирующей сферы мала, то ни изменение размеров экрана, ни изменение размеров выходного люка или образца не приводят к значительному изменению распределения освещенности.

Рис. 4. Зависимости относительной разности освещенностей от номеров колец для различных размеров выходных люков (11,0 мм и 15,0 мм): первая сфера (а); вторая сфера (б); третья сфера (в)

Для проверки влияния на фотометрическую погрешность изменения коэффициентов отражения образцов был выполнен расчет для пяти образцов с коэффициентами отражения в пределах 0,1–1,0. Результаты расчетов показали, что уменьшение коэффициентов отражения образцов приводит к снижению освещенности для всех сфер.

Для экспериментальной проверки расчетных данных использовалось пять образцов с коэффициентами диффузного отражения $\rho = 0,4-0,85$ на длине волны 457 нм, а также эталон MC 22 с коэффициентом отражения $\rho = 0,952$. Измерения проводились в видимом диапазоне длин волн 380–760 нм на лабораторном спектрометре, аналогичном [5], с применением всех трех конструкций интегрирующей сферы. Экспериментальные данные в целом подтвердили результаты расчетов, сходимость результатов измерений находилась на уровне 0,01 для всех исследованных образцов.

На рис. 5 приведены фотометрические погрешности для трех конфигураций интегрирующей сферы в зависимости от коэффициента отражения образца.

А.С. Шерстобитова

Основная фотометрическая погрешность обусловлена уменьшением коэффициента отражения образца. Использование экрана во второй и третьей конфигурациях сферы (рис. 1, б, в) как в центре, так и в плоскости большого круга не вносит значительной неравномерности освещенности образца, приводящей к дополнительной фотометрической погрешности. Также неравномерность освещенности в верхней части сферы не влияет на погрешность измерений. Влияние изменения размеров экрана, выходного люка и оптоволоконного коллектора пренебрежимо мало по сравнению с основной фотометрической погрешностью.

Заключение

После проведения расчетов освещенности внутри различных конфигураций интегрирующей сферы и на образце, а также анализа фотометрических погрешностей измерения коэффициентов отражения установлено, что освещенность на образце остается практически равномерной для всех рассмотренных конструкций сферы, а основная фотометрическая погрешность связана с различием коэффициентов отражения образцов. Применение экрана не создает дополнительной фотометрической погрешности.

Литература

- 1. Tardy H.L. Matrix method for integrating-sphere calculations // Optical Society of America. 1991. V. 8. № 9. P. 1411–1418.
- 2. Clare J.F. Comparison of four analytic methods for the calculation of irradiance in integrating spheres // Optical Society of America. 1998. V. 15. № 12. P. 3086–3096.
- 3. Альтшулер Е.В., Путилин Э.С. Математическая и программная обработка данных спектрофотометрических измерений // Научно-технический вестник СПбГУ ИТМО. 2008. № 58. С. 11–16.
- Prahl S.A. Inverse adding-doubling for optical property measurements [Электронный ресурс]. Режим доступа: http: //www. omlc.ogi.edu/software/iad, свободный. – Загл. с экрана. – Яз. англ. (дата обращения: 21.09.2010).
- 5. Белов Н.П., Яськов А.Д., Грисимов В.Н. Лабораторный спектрометр для исследования коэффициента отражения и определения параметров цветности диффузно отражающих объектов // Изв. вузов. Приборостроение. – 2010. – Т. 53. – № 7. – С. 74–78.

_

Шерстобитова Александра Сергеевна

Санкт-Петербургский государственный университет информационных технологий, механики и оптики, аспирант, ashev87@mail.ru