УДК 621.81.004.17:620.191.355.001.5

ТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ОБЕСПЕЧЕНИЯ КАЧЕСТВА ИЗДЕЛИЙ А.Ю. Иванов, Д.Б. Леонов

Обосновывается целесообразность повышения качества изделий за счет оптимизации микрогеометрии поверхностей деталей и механических напряжений в поверхностных слоях их материала. Излагается принципиальная методика использования непараметрических критериев оценки и контроля этих характеристик поверхностного слоя деталей в процессе их изготовления.

Ключевые слова: шероховатость поверхности, механические напряжения, оптимизация характеристик поверхностного слоя деталей, качество изделий.

Введение

В зависимости от назначения, условий эксплуатации, ремонта и утилизации изделий к ним предъявляются различные требования. Эти требования обеспечиваются при их проектировании и, особенно, при их изготовлении. На этапе проектирования к числу важнейших факторов относятся правильный выбор материалов, назначение требований по геометрической точности и шероховатости поверхностей деталей.

Свойства конструкционных материалов играют огромную роль, и исходное их состояние должны гарантировать поставщики этих материалов. Однако, не умаляя роли конструкционных материалов, отметим, что основные характеристики качества изделий формируются в процессе их изготовления. Именно в процессе изготовления обеспечиваются обоснованные при проектировании требования по геометрической точности, качеству поверхности и поверхностного слоя материала изделий.

Технологическая управляемость механическими напряжениями в материале изделий

Очевидно, что повышение геометрической точности изделий повышает их качество, но одновременно повышается и себестоимость их изготовления, поэтому возможности влияния геометрической точности на качество изделий ограничены объективными факторами. Кроме того, при изготовлении изделий из металлов и сплавов во многих случаях имеют место механические и (или) термические воздействия, вызывающие пластическую деформацию кристаллических решеток материала изделия, что приводит к возникновению (или изменению) механических напряжений в деформируемом слое материала изделия. Возможные последствия:

- напряжения, превышающие предел прочности материала, в изделиях высокой жесткости вызовут возникновение трещин в материале;
- при малой жесткости изделий даже незначительные механические напряжения могут вызвать деформацию (коробление) изделия, т.е. нарушить его геометрическую точность;
- при напряжениях, меньших предела прочности материала, и высокой жесткости изделий внешних изменений в изделии не обнаруживается, но при совпадении знака остаточных напряжений и эксплуатационных силовых воздействий разрушение изделий происходит при нагрузках ниже расчетных.

Установлена технологическая управляемость механическими напряжениями в материале изготавливаемых изделий, т.е. величина и распределение этих напряжений по глубине материала зависят от видов и режимов технологических воздействий. В связи с этим важнейшее значение приобретает приемлемый в метрологическом и экономическом отношениях неразрушающий метод измерения и (или) контроля этих напряжений.

На кафедре технологии приборостроения СПбГУ ИТМО разработан и изготовлен измерительный комплекс СИТОН, позволяющий измерять механические напряжения в любых токопроводящих материалах, что дает возможность «строить» технологический процесс изготовления, на выходе которого механические напряжения будут иметь приемлемую величину и форму эпюры их распределения по глубине материала. В качестве примера на рис. 1, 2 показаны эпюры распределения остаточных напряжений при шлифовании на различных режимах и при обработке поверхностей на различных станках [1].

Шероховатость поверхностей деталей и эксплуатационные свойства изделия

Как указывалось выше, чем точнее изделие, тем лучше его функциональные свойства. По аналогии с этим существует убеждение, что чем меньше шероховатость поверхности, тем лучше. На самом деле это далеко не всегда так. Но важно другое: если шероховатость поверхности существенно влияет на конкретное функциональное свойство поверхности, то это влияние целесообразно оптимизировать. На эту тему опубликовано много статей, докладов и книг, где изложены практически все аспекты проблемы оптимизации микрогеометрии поверхностей. Отметим здесь лишь необходимость выполнения четырех условий для решения этой проблемы:

1. оптимальную шероховатость поверхности для ее конкретного функционального свойства нужно знать;

- 2. известную оптимальную шероховатость нужно обозначить (нормировать) на чертеже;
- 3. известную и обозначенную на чертеже оптимальную шероховатость нужно технологически обеспечить при обработке поверхностей;
- 4. шероховатость, полученную после обработки поверхности, нужно сравнительно быстро, удобно и дешево проконтролировать на соответствие заданной (оптимальной).

Как выполнить эти четыре условия, подробно изложено, например, в [2–10].

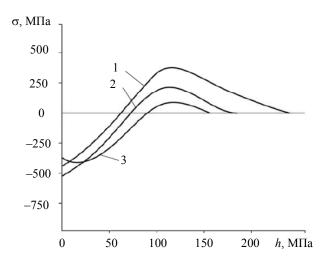


Рис. 1. Влияние режимов шлифования на остаточные напряжения $\sigma(h)$: 1 – скорость резания v=10 м/с; подача S=0,3 м/с; давление инструмента на обрабатываемую поверхность P=100 H; 2 – v=20 м/с; S=0,2 м/с; P=150 H; 3 – v=40 м/с; S=0,1 м/с; P=200 H

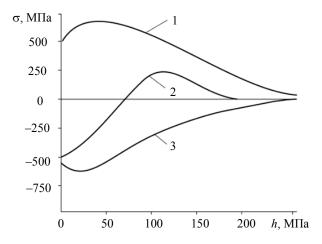


Рис. 2. Распределение остаточных напряжений σ(h) в стали 20X13 после обработки: 1 – ручное шлифование на станке ЛШ-95 (Германия); 2 – шлифование лентой на станке Metabo (Германия); 3 – фрезерование на станке Forest (Германия)

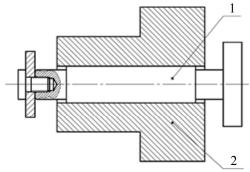


Рис. 3. Схема перемещения штока (1) во втулке (2) в запорном клапане

В данном случае рассмотрим влияние шероховатости сопрягаемых поверхностей на время перемещения штока 1 относительно втулки 2 в запорном клапане (рис. 3).

Наличие или отсутствие такого влияния проверялось в процессе сравнительно простого эксперимента. Было изготовлено пять комплектов сопрягаемых деталей (шток и втулка) по пять пар в каждом комплекте (для повышения статистической достоверности эксперимента). В каждом из пяти комплектов при минимально возможной одинаковости компонентов геометрической точности сопрягаемых поверхностей, существенно различалась их шероховатость. Результаты эксперимента приведены в таблице.

Группа	Деталь	Размер детали (диаметра), мм					Время передвижения штока во втулке, с				
1	2	3					4				
1	втулка	13,015	13,015	13,015	13,015	13,015	0,035/0,036	0,047/0,049	0,058/ 0,050	0,058/ 0,045	0,050/ 0,047
	втулка поверну- та на 90°	13,020	13,020	13,020	13,020	13,020					
	шток	12,999	13,001	13,000	13,001	13,003					
	шток повернут на 90°	13,001	13,002	13,001	13,004	13,004					
2	втулка	13,015	13,015	13,015	13,015	13,015	0,055/ 0,058	0,049/ 0,051	0,057/ 0,059	0,056/ 0,060	0,052/ 0,054
	втулка поверну- та на 90°	13,020	13,020	13,020	13,020	13,020					
	шток	13,001	13,003	13,003	12,999	13,002					
	шток повернут на 90°	13,001	13,001	13,003	13,003	13,002					
3	втулка	13,015	13,015	13,015	13,015	13,015	0,058/ 0,056	0,053/ 0,055	0,055/ 0,049	0,058/ 0,061	0,061/ 0,063
	втулка поверну- та на 90°	13,020	13,020	13,020	13,020	13,020					
	шток	13,003	13,003	13,001	13,001	13,001					
	шток повернут на 90°	13,003	13,003	13,002	13,002	13,001					
4	втулка	13,015	13,015	13,015	13,015	13,015	0,085/ 0,078	0,066/ 0,076	0,085/ 0,092	0,088/ 0,095	0,078/ 0,086
	втулка поверну- та на 90°	13,020	13,020	13,020	13,020	13,020					
	шток	13,000	13,000	13,001	13,000	13,000					
	шток повернут на 90°	13,000	13,000	13,001	13,000	13,000					
5	втулка	13,015	13,015	13,015	13,015	13,015	0,090/ 0,105	0,091/ 0,104	0,099/ 0,098	0,101/ 0,108	0,103/ 0,106
	втулка поверну- та на 90°	13,020	13,020	13,020	13,020	13,020					
	шток	13,002	13,001	13,000	13,000	13,000					
	шток повернут на 90°	13,001	13,000	12,999	12,999	13,000					

Таблица. Результаты экспериментов

В таблице втулки и штоки, изготовленные с шероховатостью, указанной на рабочих чертежах, помещены в 4-ю группу. В первую группу объединены втулки и штоки, шероховатость которых значительно грубее, чем на чертеже. Во вторую группу входят втулки с шероховатостью, указанной на чертеже, а шероховатость штоков грубее, чем на чертеже. В третью группу входят втулки с шероховатостью грубее, чем на чертеже, и штоки с шероховатостью, указанной на чертеже. В пятую группу вошли втулки и штоки с шероховатостью более низкой, чем указана на чертеже.

Как видно из таблицы, существенное влияние шероховатости на исследуемую характеристику очевидно, хотя есть отклонение от превалирующей закономерности.

Однако задача оптимизации шероховатости не решается с использованием стандартных параметров шероховатости, так как изменения параметров Ra или Rz не характеризуют фактического изменения структуры микрорельефа. При обеспечении экспериментально найденного и заданного на чертеже предпочтительного параметра шероховатости в разное время можно использовать либо разное оборудование, либо разные инструменты, что приведет к изменению структуры микрорельефа поверхностей при обеспечении указанных на чертеже параметров и, как следствие, к изменению их свойств, в частности, времени их относительного перемещения.

Важность оптимизационных задач вообще и в технологии приборостроения, в частности, не требует доказательств, но при наличии многопараметрических факторов влияния на интересующие функциональные свойства поверхностей изделий необходимо использовать так называемый непараметрический подход. Это означает, что изложенный выше эксперимент с подвижным сопряжением запорного клапана не решает задачу оптимизации микрогеометрии его контактирующих поверхностей, и необходимо продолжить исследование с использованием в качестве критериев оценки и контроля шероховатости поверхностей графических изображений, функций плотности распределения тангенсов углов наклона профилей, ординат профилей или, хотя бы, опорных кривых профиля (кривых Аббота) [2, 3, 5–7, 10], а оптимизацию механических напряжений и технологические методы управления ими необходимо реализовывать с помощью графических изображений эпюры их распределения по глубине поверхностного слоя [1, 10].

Заключение

Экспериментально установлено существенное влияние шероховатости контактирующих поверхностей штока и втулки (рис. 3 и таблица) на время их взаимного перемещения на одинаковой величине хода, что позволит с помощью непараметрических критериев оценки и контроля шероховатости установить лучшую из возможных микроструктуру этих поверхностей. Предложенная методика позволяет решить и другие оптимизационные задачи аналогичного характера.

Литература

- 1. Валетов В.А., Иванов С.Ю. Проблемы комплексной оценки и контроля характеристик поверхностного слоя деталей машин и приборов // Фундаментальные и прикладные проблемы теории точности процессов, машин, приборов и систем. СПб, 2002. С. 164–167.
- 2. Валетов В.А. Возможные критерии оценки шероховатости обработанных поверхностей // Труды ЛКИ. 1976. Вып. 108. С. 135–140.
- 3. Валетов В.А. Использование новых критериев для оценки микрогеометрии поверхностей деталей машин // Технологическое управление качеством обработки и эксплуатационными свойствами машин. Киев: Институт сверхтвердых материалов АН УССР, 1980. С. 23–25.
- 4. Валетов В.А. Изменение микрогеометрии поверхностей трения деталей цилиндро-поршневой группы судовых дизелей в процессе их работы // Трение и износ. 1983. Т. 4. № 6. С. 1104–1107.
- 5. Валетов В.А. Оптимизация микрогеометрии поверхностей деталей в приборостроении. Л.: ЛИТМО,1989. 100 с.
- 6. Валетов В.А. Целесообразность изменения стандарта на шероховатость поверхностей деталей // Машиностроение и автоматизация производства. Межвуз. сб. СПб: СЗПИ, 1997. № 6. С. 118–121.
- 7. Мусалимов В.М., Валетов В.А. Динамика фрикционного взаимодействия. СПб: СПбГУ ИТМО, 2006. 191 с.
- 8. Waletow W., Staufert G. Moderne Methoden der Oberflaechenforschung // Technische Rundschau. 1981. № 10. P. 5–7.
- 9. Valetov W.A., Grabow J. Neue Verfahren auf dem Gebiet der Analyse und Kontrolle der Oberflaechenmikrogeometrie // 41 Internationales wissenschaftliches Kolloquium. 1996. Bd. 2. P. 622-625.
- 10. Валетов В.А., Иванов А.Ю. Непараметрический подход к оценке качества изделий // Металлообработка. -2010. -№ 6. C. 55-59.

Иванов Андрей Юрьевич

 Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кандидат технических наук, доцент, проректор, auivanov@mail.ifmo.ru

Леонов Димилян Божидаров

- BM3 AO Сопот, Болгария, заместитель директора, dimilqn@mail.ru