УДК 621.37 ЧАСТОТНО-ВРЕМЕННОЙ АНАЛИЗ СИГНАЛОВ МАЛОЗАМЕТНЫХ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ С ИСПОЛЬЗОВАНИЕМ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ А.В. Коротков

Рассматривается задача частотно-временного анализа сигналов малозаметных радиолокационных станций с помощью вейвлет-преобразования. Показана эффективность применения метода, приведены результаты моделирования. Ключевые слова: вейвлет-преобразование, частотно-временной анализ, сигналы радиолокационных станций.

Введение

В современном мире большое внимание уделяется развитию радиолокации. Широкое распространение получили малозаметные сигналы радиолокационных станций (МРЛС). Сигналы таких станций излучаются на уровне шума в широкой полосе и имеют большую длительность, что существенно затрудняет их распознавание. Для анализа сигналов таких станций применение классических методов, основанных только на модификациях преобразования Фурье [1], оказывается малоэффективным. Актуальной становится задача разработки новых методов анализа сигналов МРЛС.

В работе предлагается применение вейвлет-преобразования (ВП) для анализа сигналов МРЛС.

Вейвлет-преобразование

Данное преобразование основано на алгоритме Мала [2]. Оно выполняется при помощи так называемого банка квадратурно-зеркальных фильтров (КЗФ), посредством которых входной одномерный сигнал раскладывается на высоко- и низкочастотные компоненты (рис. 1).

Коэффициенты аппроксимации *j*-го уровня разложения, получаемые на выходе низкочастотного фильтра с импульсной характеристикой G, отображают медленно изменяющиеся компоненты исходного

сигнала, а коэффициенты детализации, являющиеся результатом применения высокочастотного фильтра с импульсной характеристикой *H*, представляют высокочастотные спектральные составляющие.

После свертки входного сигнала с импульсными характеристиками фильтров производят операцию прореживания в два раза. Выход каждого уровня преобразования образует матрицу.

Рис. 1. Схема вейвлет-преобразования

Разрешение по частоте и времени определяется формулами

$$\Delta f = \frac{f_s}{2(2^j - 1)}$$
 $\Delta t = \frac{n}{f_s(2^{L-i} - 1)},$

где f_s – частота дискретизации; L – число слоев банка КЗФ; j – номер текущего уровня; n – количество отсчетов входного сигнала. В качестве фильтра применяется модифицированный sinc-фильтр, коэффициенты которого рассчитываются по следующей формуле:

$$h(n) = \sqrt{\frac{S}{2}} \operatorname{sinc}\left(\frac{n+0,5}{C}\right) \omega(n) ,$$

где C – коэффициент сжатия, S – коэффициент масштабирования, а $\omega(n)$ – окно Хемминга. Параметры C и S могут быть найдены с использованием следующей итерационной процедуры. Вначале изменяют C так, чтобы $|H(\frac{\pi}{2})| = 1$. Затем вычисляют коэффициенты h(n), а S устанавливают равным $\frac{1}{\sum [h(n)]^2}$.

Этот процесс повторяется, пока *C* не сойдется. Используя данный подход, можно декомпозировать сигнал и измерить его параметры – ширину спектра, среднюю частоту и закон модуляции.

Применение ВП для анализа сигналов МРЛС

Основными видами внутриимпульсной модуляции, применяемой в МРЛС, являются: частотная модуляция (ЧМ), частотная и фазовая манипуляции и их комбинации. Наиболее распространенной является ЧМ с линейно изменяющейся частотой (ЛЧМ). Для кодирования фазы зондирующего сигнала широко используются коды Баркера, полифазные коды Франка, Р1, Р2, Р3 и Р4 [3].

ВП сигналов, содержащих коды Баркера. Кодовые последовательности Баркера представляют собой двоичную фазовую манипуляцию. Фаза сигнала может принимать два значения – 0° и 180°. Виды кодовых последовательностей Баркера представлены в таблице.

Длина кода	Элементы кода	Уровень боковых лепестков, дБ
2	+ -, + +	-6,0
3	+ +	-9,5
4	++-+,+++-	-12,0
5	+ + + _ +	-14,0
7	++++-	-16,9
11	++++-	-20,8
13	++++++-+	-22,3

Габлица.	Коды	Баркера
----------	------	---------

В качестве примера рассмотрен сигнал со следующими параметрами: частота несущей $f_{\rm H}$ =2,1 ГГц, полоса сигнала 250 МГц, код Баркера длины 11, частота дискретизации f_s =10 ГГц.

Рис. 2. Код Баркера – ВП уровень 3 (а); ВП уровень 8 (б)

На рис. 2, а, видно, что ВП позволяет однозначно определить несущую частоту, тип модуляции и вид кодовой последовательности. При этом полоса сигнала отличается от заданной вследствие низкого частотного разрешения на этом уровне декомпозиции. В то же время 8 уровень (рис. 2, б) дает точную информацию о значении данного параметра, но не позволяет выявить закон модуляции.

ВП сигналов, содержащих полифазные коды. Формулы, описывающие закон изменения фазы и частоты кодов, имеют следующий вид:

код Франка
$$\varphi_{i,j} = \frac{2\pi}{N}(i-1)(j-1);$$

код Р1 $\varphi_{i,j} = \frac{-\pi}{N} [N - (2j-1)] [(j-1)N + (i-1)];$
код Р2 $\varphi_{i,j} = \frac{-\pi}{N} (2i-1-N)(2j-1-N);$
код Р3 $\varphi_i = \frac{\pi}{N} (i-1)(i-1);$

код Р4
$$\phi_i = \pi \frac{(i-1)^2}{N} - \pi (i-1),$$

где i – номер отсчета на заданной частоте; j – номер частоты; $\varphi_{i,j}$ – фаза i -го отсчета j -ой частоты;

 N^2 – длина кода (для кода РЗ и Р4 длина кода равна *N*). В качестве примера рассмотрим сигнал со следующими параметрами: полоса сигнала 1 ГГц; код Франка *N*=4; частота дискретизации $f_s = 10$ ГГц.

ВП кода Франка позволяет определить все параметры исходного сигнала. При этом необходим просмотр нескольких уровней. Так на рис. 3, б, можно наблюдать 16 максимумов энергии, что соответствует длине кода N^2 .

ВП ЛЧМ сигнала. В качестве примера рассмотрим сигнал со следующими параметрами: девиация частоты 1 ГГц, частота дискретизации $f_s = 10$ ГГц (сигнал представляет собой четыре ЛЧМ участка с периодом 0,1 мкс).

Результаты представлены на рис. 4. Достаточно точно определены основные параметры ЛЧМ сигнала – вид модуляции, девиация частоты, период.

- Проведенный анализ позволяет сделать следующие выводы:
- в условиях априорной неопределенности, применение вейвлет-преобразования требует просмотра нескольких уровней декомпозиции и выбора наиболее информативного;
- частотная манипуляция может быть лучше определена на высших уровнях разложения ВП, а фазовая
 на низших.

 ВП позволяет получить высокое частотно-временное разрешение, что дает возможность анализировать сложные сигналы.

Рис. 4. ЛЧМ сигнал, ВП уровень 7 – временная диаграмма (а); спектрограмма(б)

Заключение

Вейвлет-преобразование позволяет определять основные параметры сигналов с различными видами модуляции. Этая информация может быть в дальнейшем использована для принятия решения о типе источника излучения. Полученные результаты свидетельствуют об эффективности применения вейвлетпреобразования для анализа сигналов малозаметных радиолокационных станций.

Литература

- 1. Айфичер Э.С., Джервис Б.У. Цифровая обработка сигналов: Пер. с англ. М.: Вильямс, 2004. 992 с.
- 2. Малла С. Вейвлеты в обработке сигналов: Пер. с англ. М.: Мир, 2005. 671 с.
- 3. Pace Phillip E. Detecting and Classifying Low Probability of Intercept Radar. Artech House, 2009. 857 p.

Коротков Андрей Владимирович – ОАО «НИИ Вектор», инженер, Andrey.k0206516@mail.ru