УДК 535.338.1+519.642.3+519.6

ВОССТАНОВЛЕНИЕ НЕПРЕРЫВНЫХ СПЕКТРОВ АДАПТИВНЫМ СПОСОБОМ ВЫЧИСЛИТЕЛЬНЫХ ЭКСПЕРИМЕНТОВ С РЕГУЛЯРИЗАЦИЕЙ В.С. Сизиков, А.В. Кривых

Рассмотрена обратная задача спектроскопии — восстановление непрерывных спектров путем математической обработки измеренных спектров, искаженных аппаратной функцией спектрометра и помехами. Задача сводится к решению интегрального уравнения Фредгольма I рода. Задача его решения некорректна, поэтому для получения устойчивого решения используется метод регуляризации Тихонова. При этом применен адаптивный способ вычислительных экспериментов, согласно которому, наряду с исходным спектром P, обрабатывается модельный спектр Q с задаваемым истинным спектром z и моделируемым измеренным спектром u с учетом дополнительной (априорной) информации об истинном спектре P. Это позволяет выбрать параметр регуляризации α . Предложенная методика может быть использована для повышения разрешающей способности спектрометра. Приведены численные иллюстрации.

Ключевые слова: непрерывный спектр, обратная задача спектроскопии, интегральное уравнение, метод регуляризации Тихонова, способ вычислительных экспериментов, повышение разрешающей способности спектрометра.

Введение

Измеренный спектрометром (например, интерферометром Фабри–Перо) спектр $u(\lambda)$ (где λ – длина волны) обычно отличается от истинного спектра $z(\lambda)$ [1–8]. Это проявляется, во-первых, в большей сглаженности спектра $u(\lambda)$ по сравнению с $z(\lambda)$, а именно, в спектре $u(\lambda)$ не разрешены близкие линии, сглажена тонкая структура спектральной линии, что является результатом воздействия аппаратной функции спектрального прибора [1–9]. Во-вторых, это проявляется в зашумленности спектра $u(\lambda)$, а именно, слабые линии «тонут» в шуме, что является результатом погрешностей измерений [1–3], а также воздействия среды, через которую проходит излучение [10].

Дадим следующее определение аппаратной функции (A Φ) [3, 6–8] (ср. [9, С. 32, 704]): аппаратной функцией $K(\lambda,\lambda')$ спектрометра называется его реакция (в виде измеренной интенсивности) на дискретную линию единичной интенсивности и длины волны λ' при настройке спектрометра на длину волны λ .

Форма аппаратной функции (ширина и т.д.) может заметно меняться с изменением длины волны настройки $\lambda \in [\lambda_{\min}, \lambda_{\max}]$, где $[\lambda_{\min}, \lambda_{\max}]$ – диапазон длин волн изучаемой части спектра. Обычно с увеличением λ АФ становится шире, что характерно для широкополосной спектрометрии, например, изучения спектра звезды во всем видимом диапазоне. Если же АФ практически не изменяется при изменении λ , то АФ является разностной (инвариантной): $K(\lambda,\lambda')=K(\lambda-\lambda')$, что имеет место, например, при изучении тонкой структуры отдельной линии [3, 6, 8], когда диапазон $[\lambda_{\min},\lambda_{\max}]$ мал.

На рис. 1 в качестве примера приведен смоделированный непрерывный измеренный спектр $u(\lambda)$, сглаженный аппаратной функцией спектрометра $K(\lambda,\lambda')$, а также зашумленный (и дискретизированный) измеренный спектр $\tilde{u}(\lambda) = u(\lambda) + \delta u$ (где δu — шум) и $\Delta \Phi$ спектрометра, причем, поскольку в дан-

ном примере $K(\lambda,\lambda')$ – функция неразностная, то приведено два ее «сечения» (подробности примера см. дальше). В принципе похожий вид может иметь непрерывный узкополосный спектр [6, С. 200], например, сверхтонкая структура отдельной линии, обусловленная магнитными или электрическими полями (эффект Зеемана или Штарка), а также тепловым уширением (эффект Доплера) [10], однако в этом случае диапазон $[\lambda_{\min}, \lambda_{\max}]$ мал, а $A\Phi$ – разностная: $K(\lambda, \lambda') = K(\lambda - \lambda')$.

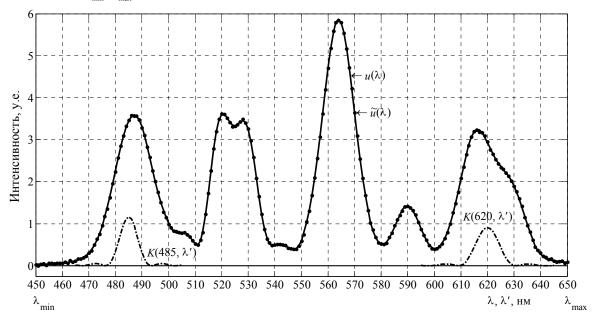


Рис. 1. $u(\lambda)$ – измеренный без шума спектр; $\tilde{u}(\lambda)$ – измеренный зашумленный и дискретизированный спектр; $K(\lambda^*,\lambda')$ – АФ при некоторой длине волны настройки $\lambda=\lambda^*$; $[\lambda_{\min},\lambda_{\max}]$ – широкий диапазон длин волн

Как будет видно далее, в примере на рис. 1 в измеренном спектре $u(\lambda)$ (тем более, в зашумленном спектре $\tilde{u}(\lambda)$) не разрешены близкие линии и не выявлены слабые, причем этот эффект тем сильнее, чем шире АФ $K(\lambda,\lambda')$ (а также чем выше уровень шумов), другими словами, чем меньше разрешающая способность спектрометра [1,9].

В данной работе ставится известная обратная задача спектроскопии — задача восстановления истинного спектра $z(\lambda)$ по измеренному спектру $\tilde{u}(\lambda)$ и аппаратной функции $K(\lambda,\lambda')$ [1–8, 11–15]. Данная задача описывается интегральным уравнением (см. дальше), задача решения которого некорректна, поэтому его обычно решают методом регуляризации Тихонова. При этом важным является вопрос о выборе параметра регуляризации α . В данной работе предлагается новый адаптивный способ (вычислительных экспериментов) для выбора параметра α .

Математическая формулировка обратной задачи спектроскопии

Рассмотрим случай непрерывного спектра, обычно характерного для веществ с повышенной плотностью (расплавленный жидкий металл, плазма и т.д.). Измеренная интенсивность $u(\lambda)$ при настройке спектрометра на длину волны λ равна сумме (интегралу) по всем истинным интенсивностям $z(\lambda)$ с весовой функцией K:

$$u(\lambda) = \int_{a}^{b} z(\lambda') K(\lambda, \lambda') d\lambda',$$

где $a = \lambda_{\min}$, $b = \lambda_{\max}$, откуда, варьируя значение λ (т.е. выполняя сканирование по спектру) и учитывая зашумленность спектра $u(\lambda)$, получим:

$$\int_{a}^{b} K(\lambda, \lambda') z(\lambda') d\lambda' = \tilde{u}(\lambda) , \quad c \le \lambda \le d ,$$
(1)

где [c,d] – пределы изменения λ (обычно более широкие, чем [a,b]).

В соотношении (1) известны (измерены или заданы) $\tilde{u}(\lambda)$, $K(\lambda,\lambda')$, a,b,c,d, а $z(\lambda')$ является искомым истинным спектром. Соотношение (1) есть интегральное уравнение Фредгольма I рода, причем

 $K(\lambda,\lambda')$ является ядром уравнения, $\tilde{u}(\lambda)$ – правой частью, а $z(\lambda')$ – искомой функцией. Если $K(\lambda, \lambda') = K(\lambda - \lambda')$, то

$$\int_{0}^{\infty} K(\lambda - \lambda') z(\lambda') d\lambda' = \tilde{u}(\lambda), \quad 0 \le \lambda < \infty.$$
 (2)

Соотношение (2) есть интегральное уравнение Фредгольма I рода типа свертки на полуоси. Решение уравнения (1) или (2) дает возможность, в принципе, восстановить истинный спектр $z(\lambda)$. Однако задача решения уравнений (1) и (2) является некорректной (существенно неустойчивой) [2-4, 6, 8, 16]: если решать уравнение (1), например, методом квадратур, а уравнение (2) – методом преобразования Фурье (инверсной фильтрации), то в качестве решения получим так называемую «пилу» [3, 6, 8] – крайне неустойчивое решение. По этой причине для устойчивого решения этих уравнений необходимо применение таких методов, как регуляризация Тихонова [2-4, 6-8, 11-16], параметрическая фильтрация Винера [3, 6, 8, 16], итеративная регуляризация Фридмана [6, 8, 16] и др.

При обработке спектра в широком диапазоне длин волн следует учитывать изменение формы АФ $K(\lambda,\lambda')$ с изменением длины волны настройки λ . При обработке же спектра в узкой полосе следует использовать уравнение Фредгольма І рода с разностным ядром (ср. (2)):

$$\int_{a}^{b} K(\lambda - \lambda') z(\lambda') d\lambda' = \tilde{u}(\lambda), \quad c \le \lambda \le d.$$
(3)

Задача решения уравнений (1)-(3) связана с задачей редукции к идеальному спектральному прибору [1-4, 9, 17] - с одним из вариантов редукционной проблемы Рэлея [3, 6, 8, 13]. Успешное решение задачи редукции позволит путем математической обработки результатов измерений повысить разрешающую способность спектрального прибора. В настоящей статье воспользуемся методом регуляризации Тихонова. Что касается других устойчивых методов (фильтрации Винера, итеративных методов и др.), то они изложены в различных публикациях ([3, 6, 8, 16] и др.) и также могут быть применены для устойчивого восстановления спектров.

Краткая формулировка метода регуляризации Тихонова

Запишем уравнение (1) в виде

Запишем уравнение (1) в виде
$$Az \equiv \int_{a}^{b} K(\lambda, \lambda') z(\lambda') d\lambda' = \tilde{u}(\lambda) , \qquad c \le \lambda \le d ,$$
 (4)

где A — оператор, соответствующий ядру K. Метод регуляризации Тихонова сводится к решению интегрального уравнения Фредгольма II рода

$$\alpha z_{\alpha}(t) + \int_{a}^{b} B(t, \lambda') z_{\alpha}(\lambda') d\lambda' = U(t) , \quad a \le t \le b ,$$
 (5)

где $\alpha > 0$ — параметр регуляризации, а новое ядро и новая правая часть равны

$$B(t,\lambda') = B(\lambda',t) = \int_{c}^{d} K(\lambda,t) K(\lambda,\lambda') d\lambda, \qquad U(t) = \int_{c}^{d} K(\lambda,t) \tilde{u}(\lambda) d\lambda.$$

В таком варианте уравнение (5) обычно решается методом квадратур [3, 4, 6, 8, 16]. Если же рассматривать уравнение (2) или (3), то его решение методом регуляризации Тихонова будет включать преобразование Фурье и α -регуляризацию (подробности см. в [3, 4, 6, 8, 11–16, 18–21]).

При этом важным является вопрос о выборе параметра регуляризации а и об учете дополнительной (априорной) информации относительно искомого спектра $z(\lambda)$. Существует ряд способов выбора параметра регуляризации а : способ невязки, обобщенный принцип невязки, метод перекрестной значимости, локальный регуляризующий алгоритм, способ подбора и др. [3, 4, 6, 8, 13, 16, 18–21].

Способ вычислительных экспериментов

В данной работе получает дальнейшее развитие способ вычислительных экспериментов для выбора параметра регуляризации α (другие его названия – способ псевдообратного оператора, способ эталонных, или модельных примеров, способ моделирования) [3, 6, 8, 16, 22, 23]. Данный способ учитывает дополнительную (априорную) информацию об искомом спектре (оценку количества спектральных линий, их параметров и т.д.) и поэтому является интерактивным и адаптивным способом.

Кратко изложим способ вычислительных экспериментов.

Рассмотрим операторное уравнение I рода: Az = u (ср. (4)). Полагаем, что вместо точных u и K известны \tilde{u} и \tilde{K} такие, что $\|\tilde{u}-u\| \le \delta$, $\|\tilde{A}-A\| \le \xi$, где δ и ξ – верхние оценки погрешностей по норме правой части u и ядра K. При использовании метода регуляризации Тихонова решается операторное уравнение $\alpha z_{\alpha} + \tilde{A}^T \tilde{A} z_{\alpha} = \tilde{A}^T \tilde{u}$ (ср. (5)), где A^T – транспонированный оператор. Обозначим $\Delta z_{\alpha} = z_{\alpha} - z$ – погрешность регуляризованного решения z_{α} , а z – точное решение (нормальное псевдорешение [16, 20, 21]). В работах [16, 22, 23] получена следующая оценка относительной погрешности регуляризованного решения по норме:

$$\frac{\|\Delta z_{\alpha}\|}{\|z\|} \le \varepsilon(\alpha), \tag{6}$$

где

$$\varepsilon(\alpha) = \frac{\|\tilde{A}\| \eta}{2\sqrt{\alpha}} + \frac{p\alpha}{p\alpha + 1}.$$
 (7)

Здесь $\eta = \delta_{\text{отн}} + \xi_{\text{отн}}$, причем $\delta_{\text{отн}} = \delta / \|u\|$ и $\xi_{\text{отн}} = \xi / \|A\|$ — относительные погрешности исходных данных; $p = \|\tilde{A}^+\|^2$, A^+ — псевдообратный оператор: $A^+u = z$ [20, C. 184]. Функция $\epsilon(\alpha)$ является верхней огибающей для истинной относительной погрешности

$$\sigma_{\text{\tiny OTH}}(\alpha) = \frac{\|\Delta z_{\alpha}\|}{\|z\|}.$$
 (8)

В работах [16, 22] показано, что функция $\epsilon(\alpha)$ имеет (единственный) минимум при условии $p \cdot (\parallel \tilde{A}^+ \parallel \eta)^2 < 27/16 \approx 1,69$ или $\parallel \tilde{A}^+ \parallel \cdot \parallel \tilde{A} \parallel \eta < 3\sqrt{3}/4 \approx 1,30$. Согласно соотношениям (6)–(8), оценка относительной погрешности $\parallel \Delta z_\alpha \parallel / \parallel z \parallel$ регуляризованного решения z_α зависит от \tilde{A} и η (точнее, от произведения $\parallel \tilde{A} \parallel \eta$). По этой причине, если решается несколько задач (другими словами, обрабатывается несколько спектров) с одинаковыми \tilde{A} и η , то для них оценки погрешности

$$\sigma_{\text{\tiny OTH}}(\alpha) = \frac{\parallel \Delta z_{\alpha} \parallel}{\parallel z \parallel} \leq \frac{\parallel \widetilde{A} \parallel \eta}{2\sqrt{\alpha}} + \frac{p\alpha}{p\alpha + 1}$$

будут одинаковыми.

Отсюда следует, что при решении некоторого исходного примера P (т.е. при обработке исходного спектра \tilde{u}_P) с неизвестным решением (спектром) z_P можно использовать результаты решения другого, модельного, примера Q с известным (заданным) точным решением (спектром) z_Q , причем с такими же \tilde{A} и η , что и в примере P. При этом при решении примера Q можно рассчитать функцию $\sigma_{\text{отн}}(\alpha)_Q = \|\Delta z_{\alpha Q}\|/\|z_Q\|$ и по ней найти $\alpha_{\text{опт}\,Q}$ — оптимальное значение α , при котором $\sigma_{\text{отн}}(\alpha)_Q = \min_{\alpha}$. Это значение $\alpha_{\text{опт}\,Q}$ может быть использовано при решении исходного примера (спектра) P. При этом необходимо также определить $p = \|\tilde{A}^+\|^2$. Оценка p может быть получена путем подбора такого значения p, при котором огибающая кривая $\epsilon(\alpha)$ касается набора кривых $\sigma_{\text{отн}}(\alpha)_Q$ (см. рис. 3).

Добавим, что для повышения эффективности изложенного способа модельный пример Q (или несколько примеров) должен содержать дополнительную информацию об исходном примере (спектре) P, а именно, оценку количества спектральных линий (максимумов) в искомом спектре z_P , соотношений их интенсивностей и значений их длин волн. Данную оценку должен делать опытный спектроскопист. Использование такой информации в модельном примере Q позволит более удачно выбрать параметр α . Данный способ следует считать адаптивным и интерактивным способом.

Численная иллюстрация

В рамках системы программирования МАТLAB 7 был разработан пакет программ для восстановления истинных непрерывных спектров $z(\lambda)$ путем численного решения интегрального уравнения Фредгольма I рода методом регуляризации Тихонова с использованием способа вычислительных экспериментов.

Сначала был рассмотрен первый пример (рис. 1) — оригинал P, у которого известен зашумленный измеренный спектр $\tilde{u}(\lambda)$ на равномерной сетке узлов $\lambda = \lambda_{\min}, \lambda_{\min} + h, ..., \lambda_{\max}$, где $\lambda_{\min} = 450$ нм; $\lambda_{\max} = 650$ нм; $\lambda = \Delta \lambda = \text{const} = 1$ нм — шаг дискретизации; $\lambda = (\lambda_{\max} - \lambda_{\min})/h = 200$ — число шагов дискретизации по λ . Известна также аппаратная функция — дифракционная АФ Рэлея (ср. [1, 4, 5]) вида

$$K(\lambda, \lambda') = \frac{1}{\gamma(\lambda)} \operatorname{sinc}^{2} \left(\frac{\lambda - \lambda'}{\gamma(\lambda)} \right) = \frac{1}{\gamma(\lambda)} \left\{ \frac{\sin \left[\pi(\lambda - \lambda') / \gamma(\lambda) \right]}{\pi(\lambda - \lambda') / \gamma(\lambda)} \right\}^{2}, \tag{9}$$

где $\gamma(\lambda)$ — полуширина АФ по уровню 0, равная приблизительно ширине АФ по уровню 0,5, которую мы положили равной $\gamma(\lambda) = 8\lambda/\lambda_{\min}$ нм . Спектр полагается широкополосным (от фиолетового до красного), поэтому ширина АФ непостоянна, а именно, $\gamma(\lambda_{\min}) = 8$ нм , а $\gamma(\lambda_{\max}) = 11,55$ нм , т.е. $\gamma(\lambda_{\max})/\gamma(\lambda_{\min}) = 1,44$. При этом истинный спектр $z(\lambda)$ в примере P неизвестен.

Из рис. 1 видно, что измеренный спектр $u(\lambda)$ имеет довольно сложную структуру, а именно, содержит шесть явных флуктуаций, две из которых (при $\lambda \approx 525$ нм и $\lambda \approx 620$ нм), скорее всего, состоят каждая из двух линий, но они не разрешились из-за того, что АФ имеет немалую ширину и, тем самым, ограничивает разрешающую способность спектрометра. Кроме того, есть намек на то, что при $\lambda \approx 507$ нм и $\lambda \approx 543$ нм имеются еще две слабые линии. Таким образом, все указывает на то, что на самом деле в спектре имеются не менее восьми спектральных линий. В связи с этим в качестве второго (модельного или эталонного) примера Q был составлен близкий к оригиналу P пример, истинный спектр $z_O(\lambda)$ которого состоит из 9 спектральных линий в виде гауссиан:

$$\begin{split} z_{\mathcal{Q}}(\lambda) &= 2,0 \exp\left\{-\left[(\lambda - 486)/10\right]^2\right\} + 0,4 \exp\left\{-\left[(\lambda - 512)/5\right]^2\right\} + \\ &+ 8,5 \exp\left\{-\left[(\lambda - 522)/2\right]^2\right\} + 9,2 \exp\left\{-\left[(\lambda - 530)/2\right]^2\right\} + \\ &+ 0,5 \exp\left\{-\left[(\lambda - 542)/5\right]^2\right\} + 8,2 \exp\left\{-\left[(\lambda - 566)/6\right]^2\right\} + \\ &+ 2,5 \exp\left\{-\left[(\lambda - 592)/4\right]^2\right\} + 4,5 \exp\left\{-\left[(\lambda - 614)/7\right]^2\right\} + \\ &+ 3,0 \exp\left\{-\left[(\lambda - 626)/5\right]^2\right\}. \end{split}$$

Измеренный спектр $\,u_{\scriptscriptstyle Q}(\lambda)\,$ в примере $\,Q\,$ был рассчитан согласно выражению

$$u_{\mathcal{Q}}(\lambda) = \int_{a}^{b} K(\lambda, \lambda') z_{\mathcal{Q}}(\lambda') d\lambda' , \quad c \leq \lambda \leq d ,$$

численно. При этом a = 460, b = 640, c = 450, d = 650 нм.

Погрешности измеренной $u_P(\lambda)$ были оценены примерно в 1%, что соответствует среднеквадратическому отклонению СКО $\approx 0,02$. По этой причине к значениям $u_Q(\lambda)$ были добавлены случайные нормальные погрешности с СКО от 0,01 до 0,025, что соответствует $\delta_{\rm отh} \approx 0,5-1,25\%$, поскольку значение $\delta_{\rm отh}$ в исходном примере P известно неточно. АФ спектрометра в примере Q была взята в виде (9), причем (поскольку АФ известна также неточно) $\gamma(\lambda)$ было взято равным $\gamma(\lambda) = (8+\xi)\lambda/\lambda_{\rm min}$, где $\xi = 0-0,3$, что соответствует $\xi_{\rm отh} \approx 0-3\%$.

Далее модельный пример Q был решен методом квадратур с регуляризацией Тихонова с помощью разработанной m-функции Tikh.m [6, C. 207] для ряда значений параметра регуляризации α , и была построена зависимость относительной погрешности регуляризованного решения $z_{\alpha}(\lambda)$ по отношению к точному решению $z(\lambda)$ (см. (8)):

$$\sigma_{\text{\tiny OTH}}(\alpha) = \frac{\left\| z_{\alpha}(\lambda) - z(\lambda) \right\|}{\left\| z(\lambda) \right\|}.$$

На рис. 2 представлены зависимости $\sigma_{\text{отн}}(\alpha)$ для ряда погрешностей $\delta_{\text{отн}}$ и $\xi_{\text{отн}}$. На рис. 2 представлена также огибающая $\epsilon(\alpha)$ (см. (7)), при построении которой было положено $\eta=10^{-2}$ и $\|\tilde{A}\|=\|A\|=\|u\|_{L_2}/\|z\|_{L_2}=0,82$. Для ряда значений p от 100 до 270 были рассчитаны кривые $\epsilon(\alpha)$ (рис. 2). Было выбрано то значение p, при котором одна из кривых касается набора кривых $\sigma_{\text{отн}}(\alpha)$, а именно, p=100. Этому соответствует значение параметра регуляризации $\alpha=10^{-3}$. Из рис. 2 видно, что, несмотря на разброс кривых $\sigma_{\text{отн}}(\alpha)$ и $\epsilon(\alpha)$, значения p и, как следствие, α определяются уверенно.

При значении $\alpha=10^{-3}$, выбранном с помощью решения модельного примера Q как вспомогательного восстановлен спектр в исходном примере P (рис. 3). Как видно из рис. 3, в примере P разрешились близкие линии и восстановились слабые линии, правда, на краях спектра проявился эффект Гиббса, однако в слабой форме (на уровне погрешностей метода). Аналогичные результаты получены для других, весьма различных, непрерывных спектров [3, 6–8, 14, 22, 23], т.е. изложенная в работе методика вычислительных экспериментов может быть использована для широкого класса спектров (с близкими линиями, со слабыми линиями, узкими и широкими линиями и т.д.).

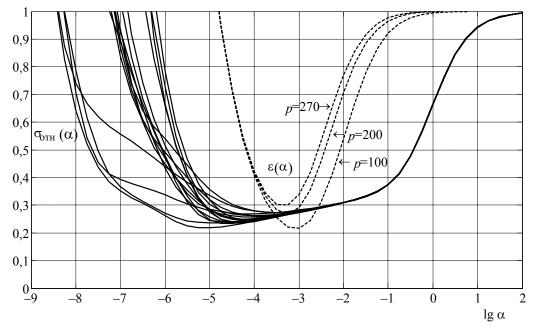


Рис. 2. Зависимости $\sigma_{\text{отн}}(\alpha)$ для ряда погрешностей $\delta_{\text{отн}}$ и $\xi_{\text{отн}}$ и огибающие $\epsilon(\alpha)$

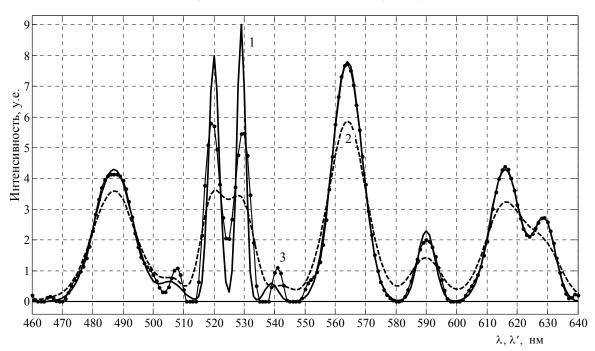


Рис. 3. 1 – истинный спектр $z_{_{P}}(\lambda)$; 2 – измеренный спектр $\tilde{u}(\lambda)$; 3 – восстановленный спектр $z_{_{\alpha P}}(\lambda)$

Заключение

Практическое использование изложенной методики позволит повысить разрешающую способность спектрометра. Спектральный прибор может быть соединен с компьютером или со спецпроцессором с заложенным в него математическим и программным обеспечением, реализующим методы и численные алгоритмы решения обратной задачи спектроскопии. В результате такого комплексирования (соединения прибора с компьютером) можно разрешить близкие и выделить слабые линии спектров излучения (или поглощения), а именно, в физике – спектров газов, жидкостей, металлов, плазмы; в астрофизике – спектров звезд, планет, галактик, туманностей, комет; в металлургии – спектров расплавленных металлов в домнах; в геофизике – спектров залежей руд, минералов, нефти, газа и т.д.

Работа выполнена при поддержке РФФИ (грант № 13-08-00442).

Литература

- 1. Раутиан С.Г. Реальные спектральные приборы // Успехи физических наук. 1958. Т. 66. Вып. 3. C. 475–517.
- 2. Кочиков И.В., Курамшина Г.М., Пентин Ю.А., Ягола А.Г. Обратные задачи колебательной спектроскопии. – М.: Изд-во МГУ, 1993. – 204 с.
- 3. Сизиков В.С. Математические методы обработки результатов измерений. СПб: Политехника, 2001.
- 4. Старков В.Н. Конструктивные методы вычислительной физики в задачах интерпретации. Киев: Наукова думка, 2002. – 264 c.
- 5. Fleckl T., Jäger H., Obernberger I. Experimental verification of gas spectra calculated for high temperatures using the HITRAN/HITEMP database // J. Phys. D: Appl. Phys. – 2002. – V. 35. – P. 3138–3144.
- 6. Сизиков В.С. Обратные прикладные задачи и MatLab. СПб: Лань, 2011. 256 с.
- 7. Сизиков В.С., Кривых А.В. Применение способа эталонных примеров при решении обратной задачи спектроскопии методом регуляризации // Изв. вузов. Приборостроение. – 2011. – Т. 54. – № 9. – С. 44–
- 8. Сизиков В.С. Интегральные уравнения и MatLab в задачах томографии, иконики и спектроскопии. Saarbrücken: LAP, 2011. – 252 c.
- 9. Физический энциклопедический словарь / Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия, 1984. -
- 10. Ландсберг Г.С. Оптика: Учебное пособие для вузов. 6-е изд. М.: ФИЗМАТЛИТ, 2003. 848 с.
- 11. Преображенский Н.Г., Седельников А.И. Оптимизация спектроскопических измерений на основе методов регуляризации // Журнал прикладной спектроскопии. – 1981. – Т. 35. – Вып. 4. – С. 592–599.
- 12. Брагинская Т.Г., Клюбин В.В. Решение обратной задачи спектроскопии оптического смещения методом регуляризации Тихонова. Препринт № 855. – Л.: ЛИЯФ, 1983. – 60 с.
- 13. Глазов М.В., Болохова Т.А. Решение редукционной проблемы Рэлея с использованием различных модификаций метода регуляризации // Оптика и спектроскопия. – 1989. – Т. 67. – Вып. 3. – С. 533–
- 14. Кривых А.В., Сизиков В.С. Комплексированное восстановление непрерывных спектров с использованием псевдообратной матрицы // XLI Неделя науки СПбГПУ: материалы научно-практической конференции с международным участием. Ч. XIII. – СПб: Изд-во Политехн. ун-та, 2012. – С. 240–242.
- 15. Кривых А.В., Сизиков В.С. Обработка дискретных спектров с помощью алгоритма интегральной аппроксимации // Научно-технический вестник СПбГУ ИТМО. – 2011. – № 5 (75). – С. 14–18.
- 16. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Киев: Наукова думка, 1986. – 544 с.
- 17. Краулиня Э.К., Лиепа С.Я., Пикалов В.В., Скудра А.Я. К проблеме исследования атомной сенсибилизированной флуоресценции по контурам спектральных линий // Некорректные обратные задачи атомной физики / Сб. статей под ред. Н.Г. Преображенского. – Новосибирск: ИТПМ, 1976. – 133 с.
- 18. Воскобойников Ю.Е., Преображенский Н.Г., Седельников А.И. Математическая обработка эксперимента в молекулярной газодинамике. – Новосибирск: Наука, 1984. – 240 с.
- 19. Воскобойников Ю.Е., Мухина И.Н. Локальный регуляризирующий алгоритм восстановления контрастных сигналов и изображений // Автометрия. – 2000. – № 3. – С 45–53.
- 20. Морозов В.А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987. 240 c.
- 21. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. – M.: Hayкa, 1990. – 232 c.
- 22. Сизиков В.С. Обобщенный метод редукции измерений // Электронное моделирование. 1991. Т. 13. - № 4. - C. 7-14.
- 23. Верлань А.Ф., Сизиков В.С., Мосенцова Л.В. Метод вычислительных экспериментов для решения интегральных уравнений в обратной задачи спектроскопии // Электронное моделирование. – 2011. – T. $33. - N_{\circ} 2. - C. 3-12.$

Сизиков Валерий Сергеевич

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, доктор технических наук, профессор, sizikov2000@mail.ru

Кривых Александр Владимирович

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, аспирант, krivykh1987@mail.ru