1

ОПТИЧЕСКИЕ И ОПТИКО-ЭЛЕКТРОННЫЕ СИСТЕМЫ. ОПТИЧЕСКИЕ ТЕХНОЛОГИИ

УДК 528.8 (15)

ОПТИКО-ЭЛЕКТРОННЫЙ КОМПЛЕКС ПОВЫШЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ

А.В. Демин, А.В. Денисов, И.А. Перл, А.А. Третьякова

Описан оптико-электронный комплекс дистанционного зондирования Земли с повышенной производительностью и эффективностью процесса дистанционного зондирования Земли.

Ключевые слова: оптико-электронный комплекс, дистанционное зондирование Земли, ФПЗС-линейка.

Введение

Исследования в интересах народного хозяйства и обороноспособности государства обеспечиваются оптико-электронными комплексами дистанционного зондирования поверхности Земли из космоса (ОЭК_{дзз}), наряду с известными методами и средствами повышения эффективности управления научнотехническими и технологическими процессами, связанными с разнообразными направлениями. Находящиеся сегодня в эксплуатации коммерческие спутники первого поколения (Ikonos, Quick Bird и др.), оснащенные ОЭК_{дзз}, обеспечивают съемку поверхности Земли с пространственным разрешением не более 1 м и с точностью геопривязки изображений около 15–25 м без наземных контрольных точек [1]. На 53-м Международном конгрессе по астронавтике (Хьюстон, США, 2002 г.) Европейская промышленная корпорация представила космический аппарат (КА) с ОЭК_{дзз} массой 980 кг (рис. 1), который обеспечивает на солнечно-синхронной орбите с высоты 695 км пространственное разрешение в надире 0,7 м с полосой захвата в 20 км в панхроматическом режиме съемки поверхности Земли и 2,8 м – в мультиспектральном (голубой, зеленый, красный и около ИК), производительность 30000 км² за виток (летний сезон и снимки без облаков) и 3,5 Гб/с.

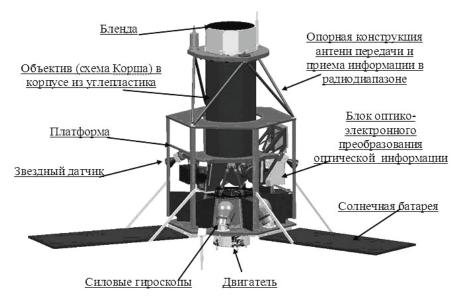


Рис. 1. Космический аппарат с ОЭКДЗЗ (Европейская промышленная корпорация)

На рис. 2 представлена обобщенная структурная схема оптико-электронного преобразователя (ОЭП). Объектив ОЭК $_{\rm Д33}$ формирует изображение поверхности Земли на фотозоне, в поле которой расположены приемники. ОЭП состоит из множества чувствительных элементов — пикселей фотоприемника на основе прибора с зарядовой связью (ФПЗС) и представляет собой в зависимости от конструктивного его исполнения либо аналог растр-линейки, либо аналог растр-матрицы. Тем самым изображение после системы приема сигналов с пикселей фотозоны становится при соответствующей нормировке их цифровым образом, который потом преобразуется в соответствующий информационный пакет. Одной из особенностей работы ФПЗС является обеспечение требуемой экспозиции при съемке, которая определяется, помимо условий съемки, относительным отверстием объектива и временем снятия сигнала с пикселя, т.е. выполнением режима временной задержки и накопления, что приводит к необходимости «удержания» в поле зрения ОЭК $_{\rm Д33}$ снимаемого участка поверхности Земли (тангажирования). В значительно меньшей степени выполнение алгоритма тангажирования требуется для ФПЗС-матрицы, чем для ФПЗС-линейки.

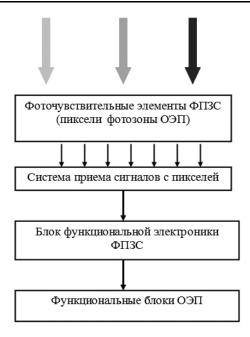


Рис. 2. Обобщенная структурная схема оптико-электронного преобразователя ОЭКдзэ

Работа ОЭКдзз

Не умаляя общности соотношений, приведенных в работе [2], преобразуем их для случая движения ОЭК $_{\rm J33}$ с ОЭП на основе ФПЗС-линейки при наблюдении в надир относительно подспутниковой точки на поверхности Земли в плоскости орбиты без рыскания и крена, что представлено на рис. 3 и соотношениями (1).

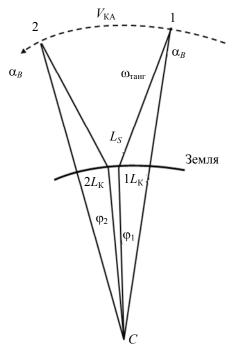


Рис. 3. Плоскость орбиты

$$\begin{split} & W_{\text{СДИ - OЭП}} = \frac{\delta}{\tau_{\text{пр}}} = W_{\text{ПСТ - OЭП}} - W_{\text{KA - танг - OЭП}}; \\ & W_{\text{ПСТ - OЭП}} = V_{\text{ПСТ}} \times \cos(\alpha_B + \varphi) \times \frac{f'}{D_H}; \\ & W_{\text{KA - танг - OЭП}} = W_{\text{ПСТ - OЭП}} - \frac{\delta}{\tau_{\text{пр}}}; \\ & \omega_{\text{танг}}(\alpha_B) = \frac{V_{\text{ПСТ}} \times \cos(\alpha_B + \varphi)}{D_H} - \frac{\delta}{\tau_{\text{пр}} \times f'}; \\ & \varphi = \arcsin\left(\frac{D_H}{R_{\text{Земли}}} \times \sin\alpha_B\right); l_{\text{ПП}} = \frac{\delta \times D_H}{f' \times \cos(\alpha_B + \varphi)} \\ & D_H = (R_{\text{Земли}} + H)\cos\alpha_B - \sqrt{R_{\text{Земли}}^2 - (R_{\text{Земли}} + H)^2 \times \sin^2\alpha_B} \\ & t_{\text{скан}} = \frac{2\alpha_B}{\omega_{\text{танг}}(\alpha_B)}; L_S = V_{\text{ПСТ}} \times \cos(\alpha_B + \varphi) \times t_{\text{скан}} - 2R_{\text{Земли}} \times \varphi; \\ & Z_W = \frac{W_{\text{ПСТ} - OЭ\Pi}(\alpha_B)}{W_{\text{СДИ - OЭ\Pi}}}; Z_{\omega} = \frac{\omega_{\text{T}}(\alpha_B = 0)}{\omega_{\text{T}}(\alpha_B \neq 0)}. \end{split}$$

В соотношениях (1) приняты следующие обозначения: $V_{\rm KA}$ — линейная скорость движения КА; $V_{\rm CДИ}$ — скорость сдвига изображения в фотозоне ОЭП; $V_{\rm ПСТ}$ — линейная скорость подспутниковой точки; f — фокусное расстояние объектива ОЭК $_{\rm ДЗ3}$; H — высота орбиты КА относительно подспутниковой точки; $W_{\rm CДИ-ОЭП}$ — необходимая скорость движения изображения для обеспечения требуемой экспозиции при съемке; δ — размер пикселя фотозоны ОЭП; $W_{\rm KA-танг-ОЭП}$ — скорость сдвига изображения в фотозоне ОЭП при тангажировании; $\tau_{\rm пр}$ — необходимое время накопления сигнала на пикселе при съемке (свойство фотозоны); N — число шагов накопления (число повторения засветки пикселя для получения сигнала требуемого уровня); $\omega_{\rm танг}$ — угловая скорость тангажирования; $1L_{\rm K}$ и $2L_{\rm K}$ — величина 1-го и 2-го равных кадров; $l_{\rm ПП}$ — проекция пикселя на поверхность Земли; $L_{\rm S}$ — величина слепого (т.е. невидимого) участка поверхности Земли; $\varphi_{\rm I}$ и $\varphi_{\rm I}$ — углы между радиусами Земли ($R_{\rm Земли}$ = 6371 км), проведенными через подспутниковую точку и точку визирования; $\alpha_{\rm B}$ — угол визирования ОЭК $_{\rm ДЗ3}$.

Анализ результатов расчета параметров для ОЭКДЗЗ

В таблице приведены результаты расчета параметров для ОЭКдзз в соответствии с (1).

Рассчитываемые параметры	Исходные данные ОЭК _{Д33} при наблюдении в надир: H =575 км; f =1670 мм; $V_{\Pi CT}$ =6,948 км/с; $t_{\Pi p}$ =1,5×10 ⁻³ c; δ =5 мкм; $V_{CДИнадир}$ = 20,18 мм/с; $W_{CДИ-OЭ\Pi}$ =3,333 мм/с			
	$\alpha_B = 0^{\circ}$	$\alpha_B = 10^{\circ}$	$\alpha_B = 20^{\circ}$	α _B =30°
$D_H(\alpha_B)$, км	575	584	615,6	674
φ (α _B), град	0	0,91	1,894	3,03
$W_{\Pi \text{CT-O} \ni \Pi}$, мм/с	20,18	19,51	17,489	14,433
Z_W	6,055	5,85	5,25	4,33
$W_{\mathrm{KA-танг-OЭ\Pi}}$, мм/с	16,847	16,177	14,156	11,1
$\omega_{\text{танг}}(\alpha_B), c^{-1}$	0,01009	0,00969	0,00848	0,00665
Z_{ω}	1	1,041	1,19	1,52
$t_{\text{скан}}(\alpha_B)$, c	0	34,88	69,77	104,65
$l_{\Pi\Pi}$ (α_B), м	1,7	1,78	1,99	2,41
$L_S(\alpha_B)$, KM	0	40,1	63,83	53,71

Таблица. Расчет параметров для ОЭКдзз

Из анализа таблицы видно, что, если линейное разрешение на местности должно быть не более 2 м, то α_B должно быть не более 20°, а для того, чтобы выдержать необходимое условие экспонирования, необходимо обеспечить замедление скорости движения изображения в 6–5,25 раз. Это возможно только при выполнении тангажирования, т.е. удержание в поле зрения ОЭК $_{д33}$ с ОЭП на основе ФПЗС-линейки снимаемого участка Земли на время $t_{\text{скан}}$ (α_B). За время возвращении линии визирования в исходное положение для начала съемки следующего по трассе участка ОЭК $_{д33}$ пролетает участок длиной L_S (α_B), который и является пропущенным в процессе ДЗЗ. Полная информация о снимаемом участке поверхности Земли может быть получена при визировании его в течение времени $t_{\text{скан}}$, что равнозначно Z_W . Для сокращения $t_{\text{скан}}$, а соответственно и L_S (α_B) разобъем ФПЗС-линейку на (Z_W +1) участков и применим алгоритм параллельно-последовательного сканирования, т.е. на всех участках одновременно последовательно опрашиваются пиксели, что снижает время $t_{\text{скан}}$ в (Z_W +1) раз.

ОПТИКО-ЭЛЕКТРОННЫЙ КОМПЛЕКС ПОВЫШЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ

Реализовать это можно, применив «волновой метод» снятия данных с ФПЗС-линейки [3]. Основная идея этого метода заключается в том, что данные снимаются не со всех пикселей одновременно, а выборочно, группами. Такой подход позволяет кардинально изменить структуру выходных данных, снимаемых с линейки. Пусть набор фотоприемных элементов $\Phi\Pi 3C$ -линейки разбит на группы длиной Nэлементов, тогда выборки, считываемые за один раз, будут содержать каждый N-ый, N+1, N+2 и т.д. элементы. Каждая группа элементов после того, как с нее будет снят заряд, будет снова переходить в режим накопления, но, так как снятие заряда происходит в разное время, то данные, накапливаемые в соседних ячейках, будут разнесены по времени. Рис. 4 показывает соотношение структур результирующих изображений, полученных классическим способом и с применением «волнового» метода. На рис. 5 приведен пример для N=3. Как видно из схемы, использование «волнового» метода позволяет получить информацию о снимаемых областях, которая раньше находилась между строчек изображения, полученного классическим способом. При этом количество точек результирующего изображения остается прежним, меняется только их расположение. Конфигурация пикселей может играть решающую роль в тех случаях, когда в области съемки оказываются узкие объекты, расположенные параллельно снимающей ФПЗСлинейке, например, реки и автострады. Если они окажутся пропущенными в процессе съемки, то их восстановление на основе имеющихся пикселей будет невозможно. Использование «волнового» метода дает на выходе не построчное изображение, а равномерное покрытие области съемки пикселями. Меньшее количество информации об отдельных «строчках» изображения классической съемки компенсируется данными о межстрочных участках.

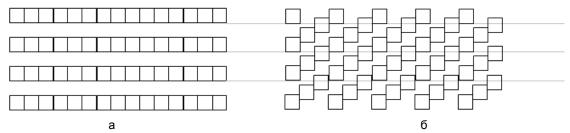
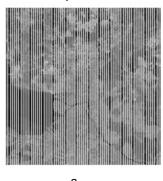



Рис. 4. Структура изображения информации без использования «волнового» алгоритма съема (а) и с применением «волнового» алгоритма съема (б)

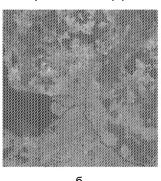


Рис. 5. Результаты моделирования процесса съемки без использования «волнового» метода (а) и с применением «волнового» метода (б)

Заключение

Таким образом, анализ состояния и тенденций развития $OЭK_{Д33}$ позволяет сделать вывод, что смещение изображения в фотозоне у модернизированной линейки (без использования тангажного замедления) примерно такое же, как у классической линейки (с учетом тангажного замедления). Использование нового типа сенсора позволяет отказаться от операции тангажирования и дает возможность ведения маршрутной съемки, длительность трассы которой ограничена лишь объемами данных, которые можно передать наземным станциям.

Литература

- 1. Демин А.В., Денисов А.В., Летуновский А.В. Оптико-цифровые системы и комплексы космического назначения // Изв. вузов. Приборостроение. -2010. N 2. C. 51-59.
- 2. Петрищев В.Ф. Оптимальная программа сканирования оптико-электронного телескопического комплекса дистанционного зондирования Земли // Труды Proceedings IIA. Международная академия информатизации. М.: Зеленоград, 2003. С. 26–38.

О.Ю. Лашманов, А.В. Пантюшин, А.Н. Тимофеев, С.Н. Ярышев

3. Демин А.В., Перл И.А. Волновой алгоритм для работы с линейкой ФПЗС // Научно-технический вестник СПбГУ ИТМО. -2010. -№ 3. - C. 19-25.

Демин Анатолий Владимирович

Санкт-Петербургский государственный университет информационных технологий, механики и оптики, доктор технических наук, профессор, dav_60@mail.ru

Денисов Андрей Васильевич Перл Иван Андреевич - OAO «ЛОМО», аспирант, www.denisoff@mail.ru

Санкт-Петербургский государственный университет информационных технологий, механики и оптики, аспирант, j-pearl@mail.ru

Третьякова Анастасия Александровна

OAO «ЛОМО», аспирант, tretyakovaa_17@mail.ru